
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6235 153

Request Scheduling Techniques in Large Scale

Computing Environments

R. Arokia Paul Rajan

Professor, Department Master of Computer Applications, Pope John Paul II College of Education, Pondicherry, India

Abstract: Resource management is a crucial area of research since the emergence of large-scale computing

environments. The user’s satisfaction these computing systems depends on the efficiency of resource provisioning.

Request Schedulingis a key component of resource provisioning and management. Continuously improving the

efficiency of request schedulingprinciples significantly enhances the performance of these systems. A detailed survey

of literature presented in this paper helps to understand the course of research in this area.

Keywords: load balancing, client/server, peer-to-peer, grid, cloud.

I. INTRODUCTION

Various scheduling techniques have been designed and

adopted in different domains of interest in distributed

systems. The contributions were designed based on

popular existing models as well as by making suitable

changes to extend the existing ones.

The following literature survey presents the contributions

that are influential for the research works based on design,

principles, parameters, metrics, and interfaces.

II. SCHEDULING PRINCIPLES IN CLIENT/

SERVER SYSTEMS

In random allocation principle [1], the requests are

assigned to any server picked randomly among the group

of servers. In such a case, one of the servers may be

assigned with more requests while the other servers

remain idle. However, on an average, each server gets its

share of the load by random selection.

In round-robin principle [2,3], the scheduler assigns the

requests to a list of the servers on a circular basis. The first

request is allocated to a server picked randomly from the

group so that if more than one scheduler arrives

simultaneously, not all of these requests go to the same

server. For the subsequent requests, the scheduler follows

the circular order to redirect the request. Once a server is

assigned a request, the server is moved to the end of the

list. This keeps the servers equally assigned.

Weighted round-robin principle [4] eliminates the

deficiency of the plain round- robin principle. In a

weighted round-robin, one can assign a weight to each

server in the group so that if one server is capable of

handling twice as much load as the other, the powerful

server gets a weight of 2.

In such cases, the scheduler will assign two requests to the

powerful server for each request assigned to the lower one.

III. SCHEDULING PRINCIPLES IN PEER-TO-PEER

SYSTEMS

ID management technique [5] is a greedy distribution

principle that directs joining peers to a highly frequented

region of the ID space. It is based on the principle that

peers responsible for these regions are most likely to be

overloaded. To identify these highly-frequented regions,

the statistics on the utilization of the peers’ overlay links

during the regular operation of the Peer-to-Peer network

has been collected.

In Intra-cluster principle [5], the cluster leader receives the

information periodically regarding the loads and available

disk space of the peers. Based on the load, the cluster

leader creates a sorted list of the peers such that the first

element of the list is the heavily loaded peer. Periodically,

the cluster leader checks for any load imbalance due to

any peer joining/leaving the system. Inter-cluster principle

manages this hotspot imbalance of load by replicating the

hot data from the first peer in the list to the last peer and

the second peer to the second last peer and so on [6-8]. If

the load difference between the peers exceeds a pre-

specified threshold, then the data will be replicated.

Dynamic structured P2P Systems with Directories [9]

stores the load information of the peer nodes in a number

of directories which periodically schedule reassignments

of virtual servers to achieve better balance. Each directory

has an ID known to all nodes and is stored in a node

responsible for that ID. Each directory collects load and

capacity information from nodes of its peer. When node’s

utilization jumps above a parameterized threshold, it

immediately reports to the directory which it has contacted

recently. It then schedules immediately transferring from

the current node to the lightly loaded nodes.

IV. SCHEDULING PRINCIPLES IN GRIDSYSTEMS

Fuzzy based scheduling principle [10] is based on the

fuzzy logic, which is a multivalued logic control and the

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6235 154

rules are in the form of fuzzy conditional statements. The

mapping of input to output is provided by Fuzzy Inference

System (FIS). The advantage using fuzzy-based approach

is that it detects the imbalance between nodes and avoids

the unnecessary load. Fuzzy-based load balancing analyses

information passed from the load monitor and then make a

decision. It uses a domain expert’s knowledge for the

creation of rule base.

Genetic Algorithm [11] based approach starts with a

randomly generated initial population called a

chromosome. Solutions from one population are taken and

used to form a new population. After several generations,

final solution or optimal solution is generated. Three basic

operations used in GA are selection, crossover, and

mutation. In Agent-based approach [12], a centralized

control mechanism is used by the agent. An agent searches

the suitable node for the execution of the job. A system

with multiple agents dispatches the agents to multiple

nodes to execute the service. All agents have prior

knowledge about other agents. Whenever an agent

receives a job, it connects with the other agents to

determine the job execution time.

The Hybrid approach [13] maintains the status of each

node as idle or busy. To effectively utilize the participant

node and the overall system, a hybrid approach is

beneficial. In the static approach, there is no need for

continuous collection of system information. In other

hand, dynamic approach assigns a task to the appropriate

node based on continuous monitoring of system

information. Policy-based approach [14] handles different

computation time of a job on various nodes. The initial

execution time of a job is set to the mean value. This value

is taken by using the different time values on a set of

available nodes. When the algorithm changes its

scheduling decision mean time, it is updated using

iterative scheduling approach. History based approach [15]

estimates the start time for the job and then allocates it to

the appropriate server. The estimation of the start time is

done using execution history. The scheduler contains

various modules such as resource select, reservation map,

and information service.

V. SCHEDULING PRINCIPLES IN

CLOUDSYSTEMS

Randomized algorithm [16] is static in nature. In this

algorithm, a request can be handled by a particular server

n with a probability p. The process allocation order is

maintained for each processor independent of allocation

from the remote processor. This algorithm works well if

the processes are equally loaded. However, the problem

arises when loads are of different computational

complexities. The randomized algorithm does not maintain

deterministic approach. It works well when the round-

robin principle generates overhead for process queue.

In Round-robin principle [17], the processes are divided

between all nodes. Each request is assigned to the node in

a round-robin order. The process allocation order is

maintained locally independent of the allocations from

remote processors. Though the workload distributions

between processors are equal, the job processing times for

different processes are not same. So at any point of time,

some nodes may be heavily loaded and while others

remain idle. This principle is used in web server. Round-

robin principle is presented as follows:

Procedure Round-Robin(N, R)

/* N – Number of VMs; R – Requests; */

Output: Request assignment

1. repeat

2. maintain an index of VMs and the state of the VMs

(busy/available). At the start, all VMs have zero

allocation.

3. receive the users’ requests.

4. store the arrival time and burst time of the user requests.

5. allocate to VMs on the basis of their states known from

the VM queue.

6. allocate the time quantum for user request execution.

7. decide the scheduling order.

8. de-allocate the VMs after the execution of requests.

9. until all the requests are served;

The service scheduling schemes are modelled using a

queuing game model [18] which is used in software as a

service (SaaS) Cloud model. The objective is to maximize

the Cloud Computing Platform’s (CCP) payoff by

controlling the service requests, whether to join or balk,

and controlling the value of the CCP.

In Honey bee behaviour inspired load balancing technique

[19], the current workload of the Virtual Machine (VM) is

calculated to decide the VM states namely over-loaded,

under-loaded or balanced. According to the current load of

VM, they are grouped. The priority of the request is taken

into consideration only after removing the requests waiting

in the overloaded VM. The requests are then scheduled to

the lightly loaded VM.

The Ant colony optimization approach [20] is aimed to

provide efficient distribution of workload among the

nodes. When a request is initialized, the ant starts moving

towards the source of food from the head node. The

unprocessed request keeps a record of every node it visited

and records their data for future decision making. A

scheduling principle is then developed based on the

sociological justice distribution theory - Berg model [21].

This algorithm adopts the commercialization and

virtualization features of Cloud computing differing from

the traditional job scheduling algorithm's character by

focusing on efficiency and establishes dual fairness

constraints under the Cloud environment.

A dynamic priority parallel job scheduler [22] allows users

to control their allocated capacity by adjusting their

spending over time. This mechanism allows the scheduler

to make more efficient decisions about the jobs and users

priorities. It gives users the tool to optimize and customize

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6235 155

their allocations to fit the importance and requirements of

their jobs. The designed principle of priority based job

scheduling algorithm [23] is used in Cloud environment. It

uses multiple criteria decision making model - Analytical

Hierarchy Process.

User-priority guided Min-Min scheduling algorithm [24]

accommodates the demands of different users by

delivering the services at different levels of quality.

Therefore, the user gets guarantee for the service that he

sought for. Dynamic balancing algorithm [25] maintains

the requests in a queue to a computing node based on the

capacity of the machine. Dynamic Round-Robin (DRR)

algorithm [26] schedules the energy-aware virtual

machines based on the power save strategy which yields

better results compared to greedy and round-robin

principles.

Throttled load balancing algorithm [27] is implemented

with a Throttled Load Balancer (TLB) to monitor the loads

on each VM. TLB ensures only a pre-defined number of

Internet Cloudlets are allocated to a single VM at any

given time. If more request groups are present than the

number of available VM’s at a data center, some of the

requests will have to be queued until the next VM

becomes available. Throttled principle is presented as

follows:

Procedure Throttled(N, R)

/* N – Number of VMs; R – Requests; */

Output: Request assignment

1. repeat

2. maintain an index table of VMs and the state of the VM

(Busy / Available). At the start, all VM’s are available;

3. receive a new request;

4. query for the next allocation with resource pool;

5. parse the allocation table from the top until the first

available VM is found or the table is parsed completely;

6. if VM found then

7. return the VM ID to the controller;

8. send the request to the VM identified by that ID;

9. notify the new allocation;

10. update the allocation table accordingly;

11. else

12. append the request in the Queue;

13. de-allocate the VM when the VM finishes processing

the request;

14. until all the requests are served;

Equally spread current execution principle [28] handles

the requests with priorities. It distributes the load

randomly by checking the size and transfers the load to

those virtual machines which are lightly loaded to

maximize throughput. It is spread spectrum technique in

which the load balancer spreads the load of the job in hand

into multiple virtual machines.

Least connection principle [29] is a dynamic scheduling

principle which counts the number of connections for each

server dynamically to estimate the load. The load balancer

records the connection number for each server. The

connection number increases when a new connection is

dispatched to it and decreases the number when

connection finishes or timeout happens.

Active Monitoring principle [30] manages the load among

available VM's in a way to even out the number of active

tasks on each VM at any given time. Figure 2.3 shows the

processes involved in the active monitoring principle.

Procedure Active_Monitor(N, R)

/* N – Number of VMs; R – Requests; */

Output: Request assignment

1. repeat

2. find the available VM.

3. check for all current allocation count is less than the

max length of VM list and allocate the VM.

4. if available VM is not allocated, create a new one.

5. count the active load on each VM.

6. return the ID of those VM which is having least load.

7. allocate the request to one of the VM.

8. if a VM is overloaded then distribute some of its work

to the VM having least work so that every VM is equally

loaded.

9. receive the response to the request sent and then allocate

the waiting requests from the job pool / queue to the

available VM & so on.

10. until all the requests are served;

In the task scheduling principle [31], two-level task

scheduling mechanism is carried out to meet dynamic

requirements of users as well as to obtain high resource

utilization. It achieves load balancing by first mapping

tasks to virtual machines and then the virtual machines to

host resources, thereby improving the task response time,

resource utilization and overall performance of the Cloud

computing environment.

Biased random sampling [32] is a distributed and scalable

load balancing approach that uses random sampling of the

system domain to achieve self-organization thus balancing

the load across all nodes of the system. A virtual graph is

constructed that represents the load on the server. Each

server is symbolized as a node in the graph with each in

degree directed to the free resources of the server. This

principle is fully decentralized thus making it apt for large

network systems like Cloud. This work contributed a

novel approach using parallelism, shared state, and lock-

free optimistic concurrency control.

Min-Min algorithm [33] begins with a set of all

unassigned tasks. First, minimum completion time for all

tasks is found. Among this set, a minimum value is

selected which is the minimum time among all the tasks

on any resources. According to that minimum time, the

task is scheduled on the corresponding machine. Then the

execution time for all other tasks is updated on that

machine by adding the execution time of the assigned task

to the execution times of other tasks on that machine. The

assigned task is then removed from the list of the tasks that

are to be assigned to the machines. The same procedure is

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6235 156

followed until all the tasks are assigned to the resources.

But this approach has a major drawback. It can lead to

starvation.

Max-Min algorithm [34] is also same as the min-min

algorithm except the following: after finding out minimum

execution times, the maximum value is selected which is

the maximum time among all the tasks on any resources.

Then, according to that maximum time, the task is

scheduled on the corresponding machine. Then the

execution time for all other tasks is updated on that

machine by adding the execution time of the assigned task

to the execution times of other tasks on that machine. The

assigned task is then removed from the list of the tasks that

are to be assigned to the machines.

The objective of the branch and bound token routing

algorithm [35] is to minimize the system cost by moving

the tokens around the system. In a scalable Cloud system,

agents cannot have enough information about distributing

the workload due to communication bottleneck. So the

workload distribution among the agents is not fixed. The

drawback of the token routing algorithm can be removed

with the help of heuristic approach of token based load

balancing. This algorithm provides fast and efficient

routing decision.

VI. CONCLUSION

This paper presented the essence of various request

scheduling principles from literature and the gaps found in

the literature for further researches are summarized as

follows:

i. There is a wide scope for designing scheduling

techniques suited for large-scale distributed

environments.

ii. A technique which is adopted in a particular

architecture cannot be used as such for another since

the scenario and the parameters are unique.

iii. Based on the objective function of the system,

amendments to the existing principles can result in the

emergence of new scheduling principles.

iv. Cloud cannot be generalized with a generic

scheduling principle. There is a need to design

customized principles for its different service models

as well as for the varied services.

v. The literature on heterogeneous resources

management in large-scale distributed management is

scarcely available.

vi. There is a scope for developing weighed nodes

scheduling principles based on statistical methods.

vii. There is a need for methods that assigns a weight for

each server in a cluster as well as enumerates the

number of requests it can process.

viii. There is a need for customer preference analysis

methodologies incorporated in customer centered

business offerings like a Cloud computing model. The

literature survey reveals only a few contributions in

that direction.

ix. Setting up and experimenting the researches in real

time large-scale computing environments will be a

costly affair. Hence, there is a need for simulators.

REFERENCES

[1] A. N. Tantawi and D. Tawsley, “Optimal Static Load Balancing in

Distributed Computer Systems,” IEEE Transactions of Computers,
vol. 41, issue 3, pp. 381-384, 1992.

[2] C. Wang, C. Huang and H. Liang, “ASDF: An Autonomous and

Scalable Distributed File System,” Proceedings of the 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing, pp. 485-493, 2011.
[3] D. Grosu, A.T. Chronopoulos and M. Leung, “Cooperative load

balancing in distributed systems,” Practice and Experience in

Concurrency and Computation, vol. 20, no. 16, pp. 1953-1976,
2008.

[4] J. Zinke and B. Schnor, “The impact of weights on the performance

of Server Load Balancing systems,” Proceedings of the
International Symposium on Performance Evaluation of Computer

and Telecommunication Systems, pp. 30-37, 2013.

[5] I. Hwang, K. Roy, H. Balakrishnan and C. Tomlin, “A distributed
multiple-target Identity Management Algorithm in Sensor

Networks,” Proceedings of the IEEE Conference on Decision and

Control, vol. 1, pp. 728-734, 2004.
[6] Z. Xin-lian and X. Jian-bo, “IISA: An Inter-Cluster and Intra-

Cluster Scheduling Algorithm Cluster-Based for Wireless Sensor

Network,” Proceedings of the 4th International Conference on
Wireless Communications, Networking and Mobile Computing, pp.

1-6, 2008.

[7] R. Ranjan, L. Zhao, X. Wu, A. Liu, A. Quiroz and M. Parashar,
“Peer-to-peer cloud provisioning: Service discovery and load-

balancing,” Principles, Systems and Applications in Cloud

Computing, pp. 195-217, 2010.
[8] B. Zhang and S. Wang, “An optimization model of load balancing

in Peer to Peer (P2P) Network,” Proceedings of the International

Conference on Computer Science and Service System, pp. 2064-

2067, 2011.

[9] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P

simulator,” Proceedings of the 9th International Conference on
Peer-to-Peer, pp. 99–100, 2009.

[10] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp and I.

Stoica, “Load Balancing in Dynamic Structured P2P Systems,”
Performance Evaluation, Elsevier, vol. 63, no. 6, pp. 217-240, 2006.

[11] R. P. Prado, S. GarcíaGalán, A. J. Yuste, J. E. Muñoz Expósito, A.

J. Sánchez Santiago and S. Bruque, “Evolutionary Fuzzy Scheduler
for Grid Computing,” Proceedings of the 10th International Work-

Conference on Artificial Neural Networks, Part I, pp. 286-293,

2009.
[12] B. S. Mohapatra, S. Kumar and Jena, “A Genetic Algorithm Based

Dynamic Load Balancing Scheme for Heterogeneous Distributed

Systems,” Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications, 2008.

[13] Z. Shi, H. Huang, J. Luo, F. Lin and H. Zhang, “Agent-based grid

computing,” Applied Mathematical Modelling, Elsevier, vol. 30,
issue 7, pp. 629–640, 2006.

[14] S. ThamaraiSelvi, R. K. SathiaBhama, S. Architha, T. Kaarunya

and K. Vinothini, “Scheduling in Virtualized Grid Environment
using Hybrid Approach,” International Journal of Grid Computing

and Applications, vol.1, no.1, pp. 1-12, 2010.

[15] E. Magaña and J. Serrat, “QoS Aware Policy­Based Management
Architecture for Service Grids,” Proceedings of the 14th IEEE

International Workshops on Enabling Technologies, pp. 290-291,
2005.

[16] M. Swarna, P. S. SitharamaRaju and N. Vadaparthi, “Memoir: A

History based Prediction for Job Scheduling in Grid Computing,”
International Journal of Computer Applications, vol. 46(10), pp.1-

13, 2012.

[17] A. Thomas Henzinger, V. Anmol Singh, Vasu Singh, T. Wies and
D. Zufferey, “Static scheduling in Clouds,” Proceedings of the 3rd

USENIX conference on Hot topics in cloud computing, pp. 1-6,

2011.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6235 157

[18] B. Wickremasinghe, R. N. Calheiros and R. Buyya, “CloudAnalyst:

A CloudSim-Based Visual Modeller for Analysing Cloud
Computing Environments and Applications,” Proceedings of the

24th IEEE International Conference on Advanced Information

Networking and Applications, pp. 446-452, 2010.
[19] F. Lin, X. Zhou, D.o Huang, W. Song and D. Han, “Service

Scheduling in Cloud Computing based on Queuing Game Model,”

KSII Transactions on Internet and Information Systems, Vol.8 (5),
pp. 1554-1566, 2014.

[20] L. D. DhineshBabu and P. Venkata Krishna, “Honey bee behavior

inspired load balancing of tasks in cloud computing environments,”
Applied Soft Computing, vol. 13 (5), pp. 2292–2303, 2013.

[21] K. Nishant, P. Sharma, V. Krishna, C. Gupta, K. P. Singh, N. Nitin
and R. Rastogi, “Load balancing of nodes in cloud using ant colony

optimization,” Proceedings of the 14th International Conference on

in Computer Modelling and Simulation, pp. 3-8, 2012.
[22] H. Yu, Y. Lan, X. Zhang, Z. Liu, C. Yin and L. Li, “Job

Scheduling Algorithm In Cloud Environment,” Proceedings of

the 5th International Conference on Computational and Information

Sciences, pp. 1652-1655, 2011.

[23] S. Ghanbaria and B. Mohamed Othmana, “A Priority based Job

Scheduling Algorithm in Cloud Computing,” Proceedings of the
International Conference on Advances Science and Contemporary

Engineering, Elsevier, pp. 778 – 785, 2012.

[24] Z. Lee, Y. Wang and W. Zhou, “A dynamic priority scheduling
algorithm on service request scheduling in cloud computing,”

Proceedings of the International Conference on Electronic and

Mechanical Engineering and Information Technology, vol. 9, pp.
4665-4669, 2011.

[25] G. Liu, J. Li and J. Xu, “An Improved Min-Min Algorithm in Cloud

Computing,” Proceedings of the 2012 International Conference of
Modern Computer Science and Applications, pp. 47-52, 2013.

[26] W. Tian, Y. Zhao, Y. Zhong, M. Xu and C. Jing, “A dynamic and

integrated load-balancing scheduling algorithm for Cloud
datacenters,” Proceedings of the IEEE International Conference on

Cloud Computing and Intelligence Systems, pp. 311-315, 2011.

[27] C. Lin, P. Liu and J. Wu, “Energy-Aware Virtual Machine
Dynamic Provision and Scheduling for Cloud Computing,”

Proceedings of the IEEE International Conference on Cloud

Computing, pp. 736-737, 2011.
[28] V. Bagwaiya and S. K. Raghuwanshi, “Hybrid approach using

throttled and ESCE load balancing algorithms in cloud computing,”

Proceedings of the International Conference on Green Computing
Communication and Electrical Engineering, pp. 1-6, 2014.

[29] N. Rodrigo Calheiros, Rajiv Ranjan, A. Beloglazov, A. F. Cesar De

Rose and R. Buyya, “CloudSim: A Toolkit for Modeling and
Simulation of Cloud Computing Environments and Evaluation of

Resource Provisioning Algorithms,” Software: Practice and

Experience, Wiley Press, vol. 41, no.1, pp. 23-50, 2011.
[30] L. Yang and S. Yu, “A variable weighted least-connection

algorithm for multimedia transmission,” Journal of Shanghai

University, vol. 7, issue 3, pp. 256-260, 2003.
[31] X. Wua, M. Denga, R. Zhanga, B. Zengb and S. Zhoua, “A Task

Scheduling Algorithm based on QoS-Driven in Cloud Computing,”

Proceedings of the 1st International Conference on Information
Technology and Quantitative Management, vol. 17, pp. 1162-1169,

2013.

[32] Sheeja and S. Manakattu, “An improved biased random sampling

algorithm for load balancing in cloud based systems,” Proceedings

of the International Conference on Advances in Computing,

Communications and Informatics, pp. 459-462, 2012.
[33] H. Chen, F. Wang, N. Helian and G. Akanmu, “User-priority

guided Min-Min scheduling algorithm for load balancing in cloud

computing,” Proceedings of the National Conference on Parallel
Computing Technologies, pp. 1-8, 2013.

[34] O. M. Elzeki, M. Z. Reshad and M. A. Elsoud, “Improved Max-
Min Algorithm in Cloud Computing,” International Journal of

Computer Applications, vol. 50(12), pp. 22-27, 2012.

[35] C. Jung, H. Kim and T. Lee, “A Branch and Bound Algorithm for
Cyclic Scheduling of Timed Petri Nets,” IEEE Transactions on

Automation Science and Engineering, vol.12, no.1, pp.309-323,

2015.

